Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation.

نویسندگان

  • Naeyoung Jung
  • Namdong Kim
  • Steffen Jockusch
  • Nicholas J Turro
  • Philip Kim
  • Louis Brus
چکیده

The properties of few layer (one layer (1 L) to four layer (4 L)) graphenes doped by adsorption and intercalation of Br(2) and I(2) vapors are investigated. The Raman spectra of the graphene G vibrations are observed as a function of the number of layers. There is no evidence for chemical reaction disrupting the basal plane pi electron conjugation. Adsorption of bromine on 1 L graphene creates a high doped hole density, well beyond that achieved by electrical gating with an ionic polymer electrolyte. In addition, the 2D Raman band is completely quenched. The 2 L bilayer spectra indicate that the doping by adsorbed I(2) and Br(2) is symmetrical on the top and bottom layers. Br(2) intercalates into 3 L and 4 L graphenes. The combination of both surface and interior doping with Br(2) in 3 L and 4 L creates a relatively constant doping level per layer. In contrast, the G spectra of 3 L and 4 L with surface adsorbed I(2) indicate that the hole doping density is larger on the surface layers than on the interior layers and that I(2) does not intercalate into 3 L and 4 L. This adsorption-induced potential difference between surface and interior layers implies that a band gap opens in the bilayer type bands of 3 L and 4 L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-dependent morphologies and charge transfer of Pd on n-layer graphenes.

We report thickness-dependent morphologies of a Pd film on n-layer graphenes. Via Raman spectroscopy-based technique, obvious charge transfer has been observed among Pd and graphenes, which is also dependent on the layer number. With the increase of the layer number, the Pd film becomes coarser, and the electron transfer becomes lower.

متن کامل

Spectroscopic Study of Charge Transfer Complexes of Dibenzo-24-crown-8 (DB24C8) with Iodine in Three Chlorinated Solvents

Charge Transfer (CT) complexes formed between dibenzo-24-crown-8 (DB24C8) as an electron donor with the σ-electron acceptor iodine (I2) in chloroform, dichloromethane, and 1,2-dichloroethane solutions have been studied by different spectroscopic techniques at room temperature. The spectral studies of the complexes were det...

متن کامل

Adsorption of ozone molecules on AlP-codoped stanene nanosheet: A density functional theory study

Density functional theory calculations were carried out to investigate the structural and electronicproperties of the adsorption of O3 molecules on AlP-codoped monolayers to fully exploit the gas sensingcapability of these two-dimensional materials. Various adsorption sites of O3 molecule on the considerednanosheets were examined in detail. The side oxygen atoms of the O3 mole...

متن کامل

Determination of Trimethoprim Based on Charge-Transfer Complexes Formation

A spectrophotometric study concerning the interaction between Trimethoprim (TMP) ,Sulfamethoxazole (SFMx), as n-donor and 2,3-dichloro-5,6- dicyano-P-benzoquinine (DDQ) and chloranilic acid (CA) as π-acceptor were been performed at 25°C. The results of interaction of CA and DDQwith TMP indicate the formation of a 1:1, 1:2, charge transfer complexes through non equilibrium reactions. In the case...

متن کامل

Spectroscopic Studies on Charge-Transfer Complexation of Iodine with Dibenzo-15-crown-5 and Benzo-12-crown-4 in Chloroform, Dichloromethane and 1,2-Dichloroethane

The formation of charge-transfer complexation between dibenzo-15-crown-5 (DB15C5) and benzo-12-crown-4 (B12C4) (Donor) and iodine is investigated spectrophotometrically in three chlorinated solvents,chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solution at 25°C. The change in polarityof the solvent also doesn’t affect the stoichiometry of the complexes. Values of formation cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2009